
Unit 04 Day 10 - Scope and References.notebook

1

November 26, 2015

Mar 9-11:28 AM

1. Log in

Nov 9-7:48 PM

Nov 9-7:48 PM Nov 9-7:48 PM

return this.number;

System.out.println(order1.getNumber());

Nov 9-7:48 PM Nov 9-7:48 PM

Unit 04 Day 10 - Scope and References.notebook

2

November 26, 2015

Nov 9-7:48 PM Nov 9-7:48 PM

int a;

a

Memory is allocated for

name 'a' now points to

an empty memory slot.

Nov 9-7:48 PM

int a;
a

int b=5;

Memory is allocated for

name 'b' now points to

b

Nov 9-7:48 PM

a = b;
a

'a' will now equal

whatever 'b' points

to. 'b' points to 5,

so a=5 (a is the

value 5)

b

a

Fill a with

whatever b is

pointing to ...

Nov 9-7:48 PM

tacos order3 = new tacos("soft",50);;

*** Memory allocation is very different ***

*** We are not creating a single memory slot ***

Nov 9-7:48 PM

tacos order3 = new tacos("soft",50);

order3

order3 is an instance of a

taco object and therefore

is a reference (or pointer)

to a taco object.

type

number

soft

50

Unit 04 Day 10 - Scope and References.notebook

3

November 26, 2015

Nov 9-7:48 PM

tacos order3 = new tacos("soft",50);

tacos order4 = order 3;

order3

order4 should now equal

to whatever order3 points

to. order 3 points to this

specific instance (taco

object), so order 4 is this

specific instance!

type

number

soft

50

order4

Nov 9-7:48 PM

tacos order3 = new tacos("soft",50);

tacos order4 = order 3;

order3

type

number

soft

50
order4

*** Can you see that this could be a major issue? ***

Nov 9-7:48 PM

This code should show the big issue here ...

public class tacos {

String type;

int number;

public tacos(String type, int number){

this.type=type;

this.number=number;

}

public static void main(String[] args) {

tacos order3 = new tacos("soft",50);

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

tacos order4 = order3;

System.out.println("Order 4 = "+order4.number+" "+order4.type+" tacos.");

order4.number=10;

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

System.out.println("Order 4 = "+order4.number+" "+order4.type+" tacos.");

}

}

order3

type

number

soft

50
order4

Nov 10-9:26 AM

Moral of the story ...

If you want a new object ... use 'new'!

tacos order3 = new tacos("soft",50);

tacos order4 = order 3;

tacos order3 = new tacos("soft",50);

tacos order4 = new tacos("soft",10);

Nov 10-9:26 AM

null - simply means "empty'

tacos order3 = new tacos("soft",50);

tacos order5;

*** tacos order5 says we have a tacos object called order5 ***

*** It is a null pointer though since it never is told to point to something! ***

Nov 10-9:26 AM

null - simply means "empty'

tacos order3 = new tacos("soft",50);

tacos order5;

order3

type

number

soft

50

order5
???

null

Unit 04 Day 10 - Scope and References.notebook

4

November 26, 2015

Nov 10-9:37 AM

order3=null;

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

Adding this code ...

Nov 10-9:37 AM

order3=null;

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

Adding this code ...

Will Create ...

the NullPointerException Error!

Nov 6-3:25 PM Nov 10-9:42 AM

package unit4;

public class tacos {

String type;

int number;

public tacos(String type, int number){

this.type=type;

this.number=number;

}

public tacos(){

type="";

number=0;

}

public static void main(String[] args) {

tacos order3 = new tacos("soft",50);

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

tacos order4 = order3;

System.out.println("Order 4 = "+order4.number+" "+order4.type+" tacos.");

order4.number=10;

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

System.out.println("Order 4 = "+order4.number+" "+order4.type+" tacos.");

tacos order5=new tacos();

System.out.println("Order 5 = "+order5.number+" "+order5.type+" tacos.");

order3=null;

System.out.println("Order 3 = "+order3.number+" "+order3.type+" tacos.");

}

}

Code used today

